Mixed and Behavioral Strategies

Game Theory Course: Jackson, Leyton-Brown \& Shoham

Randomized Strategies

- There are two meaningfully different kinds of randomized strategies in imperfect information extensive form games
- mixed strategies
- behavioral strategies
- Mixed strategy: randomize over pure strategies
- Behavioral strategy: independent coin toss every time an information set is encountered

Randomized strategies example

- Example of a behavioral strategy:
- A with probability .5 and G with probability .3

Randomized strategies example

- Example of a behavioral strategy:
- A with probability .5 and G with probability .3
- Example of a mixed strategy that is not a behavioral strategy:
- $(.6(A, G), .4(B, H))$ (why not?)

Randomized strategies example

- Example of a behavioral strategy:
- A with probability .5 and G with probability .3
- Example of a mixed strategy that is not a behavioral strategy:
- $(.6(A, G), .4(B, H))$ (why not?)
- In this game every behavioral strategy corresponds to a mixed strategy...

Games of imperfect recall

Imagine that player I sends two proxies to the game with the same strategies. When one arrives, he doesn't know if the other has arrived before him, or if he's the first one.

- What is the space of pure strategies in this game?

Games of imperfect recall

Imagine that player I sends two proxies to the game with the same Ganne strategies. When one arrives, he doesn't know if the other has arrived before him, or if he's the first one.

- What is the space of pure strategies in this game?
- I: $(L, R) ; 2:(U, D)$

Games of imperfect recall

Imagine that player I sends two proxies to the game with the same strategies. When one arrives, he doesn't know if the other has arrived before him, or if he's the first one.

- What is the space of pure strategies in this game?
- I: $(L, R) ; 2:(U, D)$
- What is the mixed strategy equilibrium?

Games of imperfect recall

Imagine that player I sends two proxies to the game with the same strategies. When one arrives, he doesn't know if the other has arrived before him, or if he's the first one.

- What is the space of pure strategies in this game?
- I: $(L, R) ; \mathbf{2 :}(U, D)$
- What is the mixed strategy equilibrium?
- Observe that D is dominant for $2 . R, D$ is better for 1 than L, D, so R, D is an equilibrium.

Games of imperfect recall

- What is an equilibrium in behavioral strategies?

Games of imperfect recall

- What is an equilibrium in behavioral strategies?
- again, D strongly dominant for 2
- if I uses the behavioural strategy $(p, 1-p)$, his expected utility is $p^{2}+100 p(1-p)+2(1-p)$
- simplifies to $-99 p^{2}+98 p+2$
- maximum at $p=98 / 198$
- thus equilibrium is $(98 / 198,100 / 198),(0,1)$
- Thus, we can have equilibria in behavioral strategies that are different from equilibria in mixed strategies.

